Новости

24 декабря, 2022 19:40

Нанопривод на водородном топливе позволит управлять микроустройствами для доставки лекарств и лабораториями на чипе

Источник: Indicator
Российские ученые представили электрохимический наноактуатор — устройство, выполняющее роль двигателя для автономных микроскопических устройств. Он работает за счет горения смеси водорода и кислорода в крошечных пузырьках, которые генерируются электродами. В аналогичных устройствах электроды быстро приходят в негодность из-за большой нагрузки, однако авторы выбрали в качестве материала для них рутений — хорошо проводящий ток, но при этом прочный металл. Результаты работы, поддержанной грантом Российского научного фонда (РНФ) и опубликованной в журнале Scientific Reports, позволят создать микроскопические двигатели для автономных микроустройств в биологии и медицине.
Слева — фотография устройства, в черном прямоугольнике расположен актуатор. Справа вверху — актуатор с концентрическими электродами, справа внизу — принципиальное устройство рабочей камеры. Источник: Uvarov & Svetovoy / Sci. Rep., 2022

Механизм ускорения химических реакций на границе раздела вода-воздух, также называемый катализом на поверхности воды, пока до конца не понятен. Вместе с тем этот процесс уже считается достаточно эффективным для решения различных задач экологии, биологии и медицины. Так, например, реакции на пузырьках воздуха в воде способны помочь в очистке воды от токсинов, обезвреживании опасных для клеток активных форм кислорода или, напротив, их получении, чтобы уничтожить раковую опухоль.

Исследователи из ярославского филиала Физико-технологического института имени К.А. Валиева РАН (Ярославль) и Института физической химии и электрохимии имени А. Н. Фрумкина РАН (Москва) предложили использовать одну из таких реакций, а именно самовозгорание смеси водорода и кислорода в нанопузырьках, в работе наноактуатора, или нанопривода — двигателя, с помощью которого можно управлять микроскопическими устройствами. В качестве последних могут выступать, например, лаборатории на чипе или имплантируемые контейнеры, периодически высвобождающие лекарство в организм человека.

Нанопривод представляет собой маленькую, немногим больше толщины волоса, рабочую камеру: на кремниевую пластинку нанесены электроды, боковые стенки камеры сделаны из фоточувствительного полимера, а верхняя стенка выполнена в виде эластичной мембраны. Камера заполнена электролитом — раствором, содержащим много ионов и поэтому способным проводить ток. На электроды подают переменное напряжение высокой частоты, вследствие чего вода расщепляется на кислород и водород и образуются нанопузырьки, содержащие эти газы — по сути, получается водородное топливо. Пузырьки поднимают мембрану, которая способна, например, толкать жидкость по микроканалам или выполнять другую механическую работу. Затем мембрана возвращается в исходное положение из-за самопроизвольной реакции между нанопузырьками водорода и кислорода. Полный цикл подъема мембраны и возвращения в исходное состояние занимает всего 100 миллисекунд — почти столько же времени требуется колибри для одного взмаха крыла, — а значит, удастся контролировать и довольно быстрые микромашины.

Большой проблемой такой системы стал слишком быстрый износ электродов из-за высоких механических напряжений, вызванных нановзрывами вблизи поверхности электродов. Авторы решили эту проблему, покрыв алюминиевые электроды слоем металла рутения — все еще хорошо проводящего ток, но достаточно прочного, чтобы выдержать нагрузку от взрывов. В результате устройство работало в течение как минимум пяти часов без снижения силы тока и признаков разрушения электродов (другие электроды, например, из золота, меди или платины, разрушались уже через минуту).

«Как правило, сжигание водородно-кислородной смеси невозможно в объемах меньше нескольких микролитров, поскольку в таком случае необходимое для реакции тепло уходит слишком быстро. В нашей же установке это оказалось возможным благодаря спонтанному горению газов в нанопузырьках», — рассказывает руководитель проекта, поддержанного грантом РНФ, Илья Уваров, кандидат физико-математических наук, старший научный сотрудник ЯФ ФТИАН РАН

«Очень важно и то, что мы показали принципиальную возможность построения актуатора, работающего на “водном катализе”, зажигающем реакцию между газами в нанообъемах. Такой миниатюрный двигатель будет приводить в движение автономные микрожидкостные устройства в медицинских и биологических приложениях. Кроме того, можно заменить мембрану на более тонкую, например, из нитрида кремния, и тем самым сделать наноактуатор еще компактнее», — дополняет соавтор работы Виталий Световой, доктор физико-математических наук, ведущий научный сотрудник ИФХЭ РАН.

Если вы хотите стать героем публикации и рассказать о своем исследовании, заполните форму на сайте РНФ

29 марта, 2024
Российские ученые обучили ИИ подбирать эффективную защиту для глаз от лазерного излучения
Российские ученые разработали нейросеть для быстрой оценки способности материалов блокировать опас...
28 марта, 2024
В ИТМО создали более долговечные синие перовскитные светодиоды
Ученые ИТМО нашли новый способ получения синего излучения у перовскитных нанокристаллов. Он позвол...