На ранних стадиях развития органы эмбриона состоят из множества одинаковых клеток, которые затем становятся сложными пространственными структурами и их размеры намного превышают размеры самих клеток. Каким образом это происходит? Считается, что подобные структуры формируются в результате динамической самоорганизации, в которой важную роль играют белки-морфогены, выделяемые клетками и распространяющиеся на большие расстояния. Одно из необходимых условий самоорганизации – нахождение системы вдали от состояния равновесия, то есть в условиях сильной диссипации (рассеяния) энергии. Поэтому подобные структуры, образующиеся в ходе самоорганизации, часто называют «диссипативными».
«Усложнение эмбриона можно упрощённо свести к его закономерному подразделению на территории, состоящие из по-разному дифференцированных клеток, то есть тех, которые обладают разными функциями, играют разные роли в организме. Во многих случаях инструкции к такой упорядоченной в пространстве дифференцировке клетки тканей зародыша получают благодаря образованию диссипативных структур. Они, как правило, выглядят как градиенты концентраций белков-морфогенов. В результате клетки эмбриона, расположенные на разных расстояниях вдоль такого градиента, подвергаются воздействию разных концентраций морфогена, например, гормонов и, таким образом, получают сигналы к дифференцировке в разных направлениях», – рассказывает Андрей Зарайский, руководитель Лаборатории молекулярных основ эмбриогенеза Института биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова (ИБХ) РАН.
Известно, что сложные структуры возникают, когда есть как минимум два диффундирующих и нелинейно взаимодействующих морфогена с резко различающимися коэффициентами диффузии, то есть скоростью проникновения одного вещества в другое. Однако реальные белки-морфогены имеют близкие размеры и примерно одинаковую подвижность в водном растворе.
«За счёт чего достигается необходимая для самоорганизации диссипативных структур разница между скоростями диффузии морфогенов? Этот вопрос долгое время оставался открытым, – рассказывает Алексей Нестеренко, первый автор работы, сотрудник лаборатории молекулярных основ эмбриогенеза ИБХ РАН и Института физико-химической биологии им. А.Н. Белозёрского МГУ. – Ранее мы показали, что в процессе диффузии в межклеточном пространстве разные морфогены могут с разной силой связываться с протеогликанами, особыми белками внеклеточного матрикса (вещества)».
Исследователи предположили, что именно эта разница в неспецифическом связывании морфогенов может обеспечивать значительную разницу в их скоростях диффузии.
«С помощью математической модели мы продемонстрировали, что в системе из двух одинаково подвижных морфогенов добавление условия адсорбции одного из них на внеклеточном матриксе действительно дает возможность получать пространственные структуры по механизму динамической самоорганизации», – рассказывает Максим Кузнецов, один из авторов работы, сотрудник Физического института им. П. Н. Лебедева.
Применение новой модели авторы рассмотрели на различных примерах, в том числе на окраске сомика-кукушки.
«Эта рыба из семейства перистоусых окрашена в жёлтый цвет с многочисленными чёрными пятнами, которые разбросаны по всему телу. Разработанная нами модель хорошо объясняет формирование и закономерное уменьшение пятен его окраски по направлению от хвоста к голове», – говорит Дарья Короткова, один из авторов, студентка МГУ, выполняющая дипломную работу в Лаборатории молекулярных основ эмбриогенеза.
Разработанный подход создаёт предпосылки для развития математических моделей всё более разнообразных морфологических форм в эмбриогенезе. Сейчас исследователи работают над его дальнейшим экспериментальным подтверждением.