Новости

22 июля, 2021 09:05

РНФ запустил виртуальные экскурсии по легендарному новосибирскому Институту ядерной физики СО РАН

В 1963 году в Институте ядерной физики имени Г.И. Будкера Сибирского отделения (ИЯФ) РАН был построен и запущен один их первых в мире коллайдеров для проведения экспериментов по физике элементарных частиц – ВЭП-1. Благодаря ему ученые показали, что в исследованиях можно использовать два пучка, летящих навстречу друг другу — сейчас это основной метод изучения элементарных частиц . Сегодня, помимо физики высоких энергий, сотрудники Института при поддержке Российского научного фонда изучают терагерцовое излучение, создают экспериментальное оборудование, а также исследуют возможности использования установок для лечения рака. Теперь, не выходя из дома, можно прогуляться по залам и лабораториям ИЯФ и рассмотреть со всех сторон ускорители и другие уникальные установки. Тур подготовлен в рамках масштабного мультимедийного проекта РНФ «Наука в формате 360°». Посетить лаборатории можно на специальном сайте, запущенном в рамках Года науки и технологий при информационной поддержке Минобрнауки России: https://360.rscf.ru/organization/iyaf-so-ran/
Источник: пресс-служба РНФ
Бункер синхротронного излучения ВЭПП-4 ИЯФ СО РАН

Институт ядерной физики – лидер по производству источников синхротронного излучения. На базе лабораторий Института работает центр коллективного пользования «Сибирский центр синхротронного и терагерцового излучения», где занимаются исследованиями, связанными с использованием пучков синхротронного и терагерцового излучения, создают экспериментальную аппаратуру и оборудование для таких работ, а также специализированные источники синхротронного и терагерцового излучения.

Лаборатория 8-21 обеспечивает создание и работу экспериментальных станций синхротронного излучения на ускорительном комплексе «ВЭПП-4» и проведение экспериментов с его участием. В экспериментах используют синхротронное излучение из накопителей ВЭПП-3 и ВЭПП-4М. Оно попадает на исследовательские станции, размещенные в радиационно защищенных помещениях бункера синхротронного излучения.

Зал электронно-лучевых технологий ИЯФ СО РАН

В зале электронно-лучевых технологий лаборатории 5-11 находится установка электронно-лучевой сварки для отработки новых технологий такого типа сварки и экспериментальный стенд для отработки и испытания прототипов новых источников электронного пучка для электронно-лучевых технологий.

Электронно-лучевая сварка позволяет создать супергерметичный сварочный шов. В Институте с помощью этой технологии соединяют части вакуумных камер для Европейского исследовательского центра ионов и антипротонов (FAIR, Германия). Высокая скорость сварки и большая глубина провара стыка делают производительность этого типа сварки такой, что она в десятки раз превышает производительность других методов.

Электрон-позитронный коллайдер ВЭПП-2000

На электрон-позитронном коллайдере ВЭПП-2000 проводят эксперименты по физике элементарных частиц. С его помощью изучают, как электроны и позитроны сталкиваются и образуют адроны в области энергий до 2 гигаэлектронвольт в системе центра масс, с рекордной для этих энергий светимостью (производительностью).

Пучки электронов и позитронов сталкиваются в двух точках («местах встречи»). Чтобы «поймать» все интересные события, которые рождаются при их столкновении, нужны два детектора. На ВЭПП-2000 это детекторы КМД-3 и СНД: первый нужен для изучения событий, в которых рождаются заряженные частицы, второй предназначен, в первую очередь, для изучения событий, в которых рождаются гамма-кванты.

Лаборатория 5-11 по разработке новых магнитов и методик для измерения магнитного поля

Сотрудники Лаборатории 5-11 проводят математическое моделирование и расчет электромагнитных элементов, как со стандартными, так и с произвольными конфигурациями магнитного поля, помогают создавать элементы от модели до готового изделия. Кроме того, ученые разрабатывают и внедряют методы электронно-лучевой сварки, методы магнитных измерений и др.

Лаборатория 5-13 по созданию линейных ускорителей

Лаборатория разрабатывает элементы линейных ускорителей, в том числе ускоряющие структуры, мощные источники СВЧ питания, источники заряженных частиц и пр. Сегодня здесь создают собственный мощный клистрон.

Клистроны – это высокочастотные усилители, способные увеличивать СВЧ-сигнал с нескольких сотен ватт до десятков мегаватт. Клистроны используются при создании инжекторов коллайдеров и источников синхротронного излучения, лазеров на свободных электронах и промышленных ускорителей.

Лаборатория 9-1 по исследованию поведения плазмы в магнитных ловушках

Лаборатория изучает поведение плазмы в газодинамической ловушке. Газодинамическая ловушка – магнитная система для создания и удержания плазмы. Это открытая ловушка, ее магнитная конфигурация похожа на бутылку с двумя горлышками. В отличие от других магнитных систем – токамаков, магнитное поле которых напоминает бублик, открытые ловушки гораздо проще с инженерной точки зрения, а значит, дешевле и легче в эксплуатации. Научившись удерживать плазму в таких системах, можно упростить и удешевить будущий термоядерный реактор, обеспечив человечество чистой и дешевой энергией.

Сейчас ИЯФ готовится к введению в эксплуатацию новой магнитной ловушки Компактный осесимметричный тороид (КОТ). Отличие от других – в способе удержания и стабилизации плазмы. В ловушках открытого типа, к которым относится КОТ, плазма удерживается по принципу свободного вытекания газа из сосуда через узкое горлышко. Главная задача – увеличить время вытекания плазмы через пробку, чтобы продлить время эксперимента. Это интересная задача, существует несколько путей ее решения, и все они сложны.

Установка СМОЛА

В Лаборатории 10 находится установка, которая может стать эффективнее токамаков – «сердца» первого термоядерного реактора, строящегося во Франции в рамках проекта ИТЭР по созданию доступной альтернативной энергии. В токамаках вещество удерживают при помощи плазмы в устройстве с магнитным полем в форме бублика, но такое строение считается сложным для постройки электростанции. В этой Лаборатории создали альтернативное устройство в виде прямой трубы, в которой посередине держится плазма, концы труб сильно сжаты, создавая там области с большим магнитным полем и тем самым удерживая плазму в центральной части.

Лаборатория перспективных сцинтилляционных кристаллов

Сотрудники Лаборатории разрабатывают технологию производства перспективных сцинтилляционных кристаллов. Такие кристаллы регистрируют элементарные частицы нового поколения в разных установках: от научных установок для изучения темной материи и до прикладных установок – позитронно-эмиссионная томография, системы досмотра транспорта и другие. Некоторые, ранее выращенные кристаллы Лаборатории считаются лучшими в мире и используются для изучения космоса, океана и геологических процессов.

Проект «Наука в формате 360°» знакомит всех желающих с научными лабораториями вузов и научно-исследовательских институтов России. Участники проекта – организации на базе которых выполняются проекты, поддержанные Российским научным фондом. Виртуальный тур представляет собой набор сферических панорамных снимков лабораторий вузов и научно-исследовательских институтов России. Туры позволяют пользователю перемещаться по комнатам, рассматривать оборудование и отдельные элементы комнат, знакомиться с ними при помощи текста, звука и видео. Такой формат дает возможность представить информацию наглядно и доступно.

Посетить ИЯФ СО РАН: https://360.rscf.ru/organization/iyaf-so-ran/

18 октября, 2021
Опубликован свежий выпуск дайджеста новостей Фонда
РНФ публикует свежий выпуск обзора ярких результатов грантополучателей Фонда, освещавшихся...
15 октября, 2021
Объявлен прием заявок на совместный конкурс РНФ и ANR – Национального исследовательского агентства Франции
Российский научный фонд начинает прием заявок на четвертый совместный конкурс по поддержке российс...