Новости

11 января, 2024 16:51

В клетках человека выявлен «железосерный контроль качества»

Сотрудники биологического факультета МГУ вместе с иностранными коллегами выявили ранее неизвестный молекулярный механизм, который разрешает биосинтез белков в митохондриях человека только в том случае, если в митохондриях имеется достаточное количество железосерных кластеров, без которых эти белки не могут функционировать нормально. Результаты ученых опубликованы в журнале Molecular Cell. Работа российских исследователей поддержана грантом Российского научного фонда.
Источник: пресс-служба МГУ
Железосерные кластеры (Fe-S-кластеры) – структурированные комплексы атомов железа и серы, обладающие высоким окислительно-восстановительным (редокс) потенциалом и являющиеся кофакторами большого количества клеточных ферментов, участвующих в редокс-реакциях. Биосинтез Fe-S-кластеров в клетках человека происходит в митохондриях – органеллах, отвечающих за энергетический обмен клетки. Нарушения процесса биосинтеза Fe-S-кластеров вследствие мутаций в генах ферментов, катализирующих соответствующие реакции, являются причиной тяжелых наследственных заболеваний человека, самым частым из которых является атаксия Фридрейха: этим заболеванием страдает примерно каждый 10-тысячный человек на нашей планете. Атаксия Фридрейха вызывается мутациями в гене фратаксина, центрального фермента биосинтеза Fe-S-кластеров.

Чтобы выявить последствия мутаций в гене фратаксина на клеточном уровне, которые ранее не были известны, исследователи провели широкомасштабный скрининг белков человека, количество которых меняется в ответ на удаление из генома гена фратаксина. Таких белков оказалось достаточно много, и практически все они относились к белкам, содержащим Fe-S-кластеры. Однако белком, количество которого снижалось максимально, оказался METTL17 – митохондриальный белок, считающийся фактором сборки митохондриальных рибосом, для которого ранее не было известно никакой связи с Fe-S-кластерами.

Биофизическими методами удалось показать, что белок METTL17 в норме содержит в своем составе Fe-S-кластер, который стабилизирует связывание белка с митохондриальной рибосомой. Данные о стабилизации были получены методом криоэлектронной микроскопии: было собрано несколько миллионов микроскопических изображений комплекса белка METTL17 с митохондриальной рибосомой, которые затем были наложены друг на друга и обработаны с использованием высокопроизводительных вычислений. Это позволило исследователям получить изображение комплекса с разрешением 2,3 ангстрема и «разглядеть» в комплексе мельчайшие детали вплоть до положения отдельных атомов.

Затем в работе было показано, что в ответ на удаление из генома гена METTL17 происходило уменьшение количества митохондриальных рибосом и эффективности биосинтеза белка в митохондриях, за который как раз и отвечают митохондриальные рибосомы. Более того, в точности такой же эффект наблюдался и при внесении в ген METTL17 мутаций, приводящих к удалению из белка отдельных аминокислот, критически важных для связывания Fe-S-кластера. Мутантные версии белка METTL17, помимо этого, не могли взаимодействовать с митохондриальной рибосомой.
«Наши данные свидетельствуют о том, что белок METTL17 функционален только при наличии в нем железосерного кластера, - говорит один из авторов работы, Петр Каменский, доктор биологических наук, профессор биологического факультета МГУ. – Только в таком состоянии он связывается с митохондриальной рибосомой и обеспечивает нормальное прохождение митохондриальной трансляции. При этом в ходе этого процесса синтезируются в основном белки-компоненты дыхательной цепи митохондрий, которая богата Fe-S-кластерами. Таким образом, наши результаты показывают наличие в митохондриях «железосерного контроля качества»: нормальный биосинтез митохондриальных белков, для функционирования которых необходимы Fe-S кластеры, будет идти только в том случае, если уровень самих Fe-S кластеров в митохондриях является достаточно высоким. Если же Fe-S кластеров недостаточно, они будут отсутствовать в составе METTL17, и митохондриальная трансляция будет ингибирована; при этом этот процесс в данной ситуации был бы бессмысленным, поскольку продукты митохондриальной трансляции все равно не способны нормально работать без железосерных кластеров. Эти результаты могут в будущем помочь в разработке эффективных способов лечения атаксии Фридрейха и других болезней человека, вызываемых нарушениями метаболизма железосерных кластеров». 

Теги
Биология
26 апреля, 2024
Открыто новое семейство белков
Сотрудники Института химической биологии и фундаментальной медицины СО РАН при исследовании хронич...
22 апреля, 2024
Российские ученые выяснили, как работает антимикробный пептид из морского червя
Одной из самых острых проблем медицины остается антибиотикорезистентность, то есть возрастающая усто...