Новости

19 сентября, 2018 17:05

Биологи МГУ случайно выяснили, как разваливаются рибосомы

Сотрудники и аспиранты МГУ выяснили, что происходит с рибосомой в промежутках между синтезами белковых цепочек. Ранее науке было известно лишь два состояния рибосом: ассоциированное, когда рибосома готова к биосинтезу белка (или собственно синтезирует его), и диссоциированное, когда она распадается на две субъединицы и «отдыхает». Механизмы перехода из одного состояния в другое ранее были неизвестны, а биологи МГУ случайно открыли промежуточное состояние рибосом. Открытие учёных может послужить толчком к разработке антибиотиков нового типа. Исследование поддержано Российским научным фондом (РНФ). Работа проходила в рамках проекта «Ноев ковчег», её результаты были опубликованы в научном журнале PeerJ
Источник: Популярная механика

Рибосома представляет собой сложный комплекс из молекул РНК и белка, который осуществляет в клетке одну из ключевых функций — синтезирует белковые молекулы из аминокислот. Состоит рибосома из двух субъединиц: большой и малой. После окончания синтеза белковой молекулы у бактерий эти субъединицы расходятся (диссоциируют), и процесс биосинтеза белка не может запуститься, пока малая и большая субъединицы не объединятся (ассоциируют) вновь. 

За поддержание «разобранного» — диссоциированного — состояния рибосомы отвечает специальный белок IF3 (3-й фактор инициации трансляции). Он связывается с малой субъединицией и препятствует её связыванию с большой субъединицей. Чтобы синтез белка начался вновь, рибосоме необходимо какое-то время побыть диссоциированной. 

Как именно происходит диссоциация рибосом на субъединицы, сопровождается ли этот процесс какими-либо изменениями их структуры, и существуют ли промежуточные стадии в процессе диссоциации — до сих пор загадка. Исследовательская группа молекулярных биологов МГУ в своей работе впервые показала, что в процессе диссоциации рибосомы у бактерий существуют переходные состояния.

«Эта работа, вообще говоря, получилась довольно-таки случайно. Мы занимаемся исследованиями митохондриальной трансляции. В митохондриях также есть рибосомы и вся система биосинтеза белка, — рассказал профессор биологического факультета МГУ Пётр Каменский. — Для проверки некоторых гипотез нам понадобилось посмотреть, может ли 3-й фактор инициации трансляции из митохондрий пекарских дрожжей (mtIF3) функционально замещать аналогичный бактериальный фактор (IF3) в клетках кишечной палочки (E. coli). Для этого мы заменили в бактериальном геноме ген IF3 на ген его митохондриального аналога и оценили скорость роста получившихся мутантных бактерий».

Учёные ожидали, что при замене у E. coli гена IF3 митохондриальным аналогом mtlF3 из пекарских дрожжей мутантные бактерии будут функционировать и размножаться либо как нормальные немутантные бактерии из контрольного эксперимента, либо как бактерии с удалённым геном IF3. Первый вариант свидетельствовал бы о том, что митохондриальный mtlF3 является функциональным аналогом IF3 в бактериальных клетках, второй исход говорил бы о невозможности подобного замещения.

Однако наблюдения учёных не сходились ни с одним из ожидаемых исходов. Оказалось, что мутантные бактерии (без IF3, но с mtIF3) росли еще хуже, чем бактерии просто без IF3. Это говорит о том, что белок, образующийся в результате трансляции с митохондриального гена дрожжей, по какой-то причине токсичен для бактериальной клетки.

«Научное любопытство возобладало над непрофильностью задачи для нашей лаборатории, и мы решили разобраться в причинах подобной токсичности. Логично было предположить, что она каким-то образом связана именно с процессом биосинтеза белка, и даже, скорее всего, с процессами диссоциации и ассоциации рибосомных субъединиц (именно в этом заключается основная функция белка IF3), — продолжает рассказ профессор Пётр Каменский. — В связи с этим, мы выделили из немутантных бактерий рибосомы, добавили к ним IF3 или mtIF3 и проверили, в каком состоянии рибосомы находятся после этого. При добавлении IF3, как это и должно было происходить, мы не наблюдали целых рибосом, а только отдельные субъединицы. А вот при добавлении mtIF3 мы зафиксировали структуру, которая, судя по всему, представляет собой рибосому, в которой субъединицы уже начали расходиться друг от друга, но еще не диссоциировали до конца».

Таким образом, учёные косвенными (биохимическими) методами установили, что, помимо ассоциированного и диссоциированного состояний рибосом, существует некое третье переходное. Чтобы точно подтвердить его существование, необходимы дальнейшие исследования обнаруженного состояния рибосом прямыми методами наблюдений за молекулами посредством рентгено-структурного анализа либо криоэлектронной микроскопии. Эти методы позволяют определить положение каждого атома в молекулах с точностью до десятых долей нанометра и построить 3D-модель.

Зная структуру промежуточного состояния, учёные смогут использовать открытие для поиска антибиотиков нового принципа действия. К большинству существующих промышленных антибиотиков бактерии успели выработать резистентность, поэтому поиск новых принципов борьбы с патогенными микроорганизмами является одной из самых перспективных и актуальных областей молекулярной биологии.

Теги
Биология
26 апреля, 2024
Открыто новое семейство белков
Сотрудники Института химической биологии и фундаментальной медицины СО РАН при исследовании хронич...
22 апреля, 2024
Российские ученые выяснили, как работает антимикробный пептид из морского червя
Одной из самых острых проблем медицины остается антибиотикорезистентность, то есть возрастающая усто...